A Framework for Controlling Robots via Brain-Computer Interfaces
نویسندگان
چکیده
Systemdemonstrationen A Framework for Controlling Robots via Brain-Computer Interfaces Ronny Seiger, Tobias Nicolai, Thomas Schlegel Body Scanning für Jedermann? Evaluation eines Low-cost Systems Christian Zagel, Jochen Süßmuth ConfMashup Personenzentrische Datenintegration für Tagungsinformation Michael Koch, Peter Lachenmaier, Martin Burkhard, Eva Lösch, Andrea Nutsi, Florian Ott Digitale Fabrikation von flexiblen Displays und Touch-Oberflächen Jürgen Steimle, Simon Olberding, Michael Wessely GEPAM Eine interaktive Informationsplattform zur „Landschaft des Gedenkens" Josefine Brödner, Cindy Kröber Interaktionskonzept für projizierte Multitouchscreens auf physischen Oberflächen Lukas Döring Von der Massenware zur Individuellen Produktgestaltung Simone Braun, Kirsten Siekmann, Ramona Wallenborn, Markus Westphal-Furuya, Peter Wolf MeetingMirror Interaktives Fenster in Tagungsinformationssysteme Michael Koch, Florian Ott, Peter Lachenmaier, Eva Lösch, Andrea Nutsi, Martin Burkhard P(a)inball Flippern mit Schmerz Daniel Glomberg, Christoph Vogel, Daniel Drochtert, Alina Huldtgren, Christian Geiger PRMD Michael Heidt, Linda Pfeiffer, Arne Berger, Paul Rosenthal ZeroGravity eine virtuelle Nutzererfahrung in Luft und Wasser Daniel Glomberg, Daniel Kirchhof, Okan Köse, Fabian Schöndorff, Marcel Tiator, Roman Wiche, Christian Geiger XI
منابع مشابه
Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملRIDE: A Mixed-Mode Control Interface for Mobile Robot Teams
There is a growing need for robot control interfaces that allow a single user to effectively control a large number of mostly-autonomous robots. The challenges in controlling such a collection of robots are very similar to the challenges of controlling characters in some genres of video games. In this paper, we argue that interfaces based on elements from computer video games are effective tool...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014